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INTRODUCTION 

There are fifteen elements between barium and hafnium 

that are commonly called rare earths. Their chemistry is pre­

dominantly that of the trivalent ion. The trivalent ions of 

the fifteen elements have the electron configuration £XeJ4fn, 

where n runs from 0 to 14. The chemistry of these highly 

electropositive elements is largely ionic and is determined 

by the size of the ion. Yttrium is usually placed with 

the rare earths since its trivalent ion also has an inert gas 

core [kt], and its ionic and atomic radii lie within the range 

of the rare-earths' radii. Because of this, yttrium is found 

associated with the rare earths in nature. 

Since there is only one space between barium and hafnium 

on the periodic chart for the fifteen elements, it comes as no 

surprise that their chemistries are quite similar. In fact 

they are so similar, they are very difficult to separate. The 

first means of separating the rare earths were fractional 

crystallization and precipitation. These processes are based 

on slight differences in solubilities of salts and are ex­

tremely tedious and time consuming. Coordinating ligands have 

been useful in such separations both individually and in con­

junction with the precipitation of simple salts. 

Mandelic acid, for example, precipitates rare earths, but 

the solubilities are pH dependent. Thus rare-earth mandelates 
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may be continuously fractionated by varying the pH by addi­

tion of ammonia or hydrochloric acid (1)• 

Solvent extraction is another method of separating the 

rare earths. This method can be operated continuously and 

when using an adequate countercurrent arrangement amounts to 

the application of a great number of batchwise separations. 

Phosphorus containing acids and esters have been the most 

widely investigated solvents in the countercurrent extraction 

of rare earths* Tri-n-butylphosphate (TBP) has been widely 

studied both by itself and in conjunction with complexing 

agents. For example, EDTA increases the separation of the 

heavy rare earth ions but not those of the light rare earth 

ions. In the series holmium to ytterbium, the separation 

factor increases 2.5 to 3 times (2). 

The most widely investigated method of separation is 

that of ion exchange. For small amounts of rare earths, elu-

tion chromatography is used. That is, the rare earths are 

placed on a column and then eluted off by a solution of some 

complexing agents (the classical reagent being citric acid 

buffered with ammonium citrate). The rare earths progress 

down the ion-exchange column at different rates under the 

influence of the eluant. 

For large quantities of rare earths, displacement chroma­

tography is used. That is, the resin bed system contains an 

additional cation that is more strongly complexed by the elut-
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ing agent than the rare earths. This additional cation will 

permit resorption of the rare-earth ions on the exchanger only 

after the additional cation has been removed from the resin. 

The sharpened band fronts that result permit infinite equi­

libration of each rare-earth ion between solution and resin 

phases and thus take full advantage of differences in chelate 

stability. 

To determine whether a given chelating agent will sep­

arate individual rare earths on an ion-exchange system, one 

could, of course, test it experimentally. However, in the 

case of a powerful multidentate chelating agent where it is 

only necessary to consider the predominant 1 il complex 

species, the separation factor is essentially the ratio of 

the two stability constants. The separation factor, a, is 

a = KACh/KBCh (1) 

where = the stability constant of A, and 

Kgch = the stability constant of B. 

Therefore, if one knows the stability constants of the rare-

earth chelate species formed with a promising chelating agent, 

one could easily ascertain whether it had any potential as an 

eluant. 

The above-mentioned is not the only reason for determin­

ing stability constants. Since rare earths are so much alike 
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chemically, one can gain a "better understanding of the influ­

ence of various, minor properties, e.g. ionic radii, on coor­

dination chemistry. Therefore, the present study was under­

taken for both practical and theoretical reasons. 
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REVIEW OF LITERATURE ON THE RARE-EARTH COMPLEXES 

Stability constants for rare-earth ions with inorganic 

ligands have been determined for chloride (3-7)» bromide 

(3-5)> iodide (4, 5)» nitrate (6), carbonate (8), sulfate 

(9), and perchlorate (4). The decreasing order of affinity 

of these ions for rare-earth cations is SOzjT > Cl~ > Br" > 

I~ > ClOjj,". The hydrolysis constants have been reported for 

some of the rare earths and appear to range from 10~® to 

10""10 for the 1:1 complexes (10, 11). 

Stability constants have been determined in the case of 

many rare-earth combinations with organic ligands. Stability 

constant sequences have been reported for acetate (12-16), 

glycolate (14, 15, 17-21), methoxyacetate (17, 22), thiogly-

colate (17, 22-24), and aminoacetate (17). As one replaces 

a hydrogen next to the carboxylate group, one finds that the 

order of stability enhancement is NHg > OH > OCEj » SH. 

There seems to be a discrepancy in the aminoacetate data as 

compared to what others have found for NEg versus OH. All of 

the ligands except glycolate exhibit heavy-rare-earth chelates 

that are less stable than the corresponding chelates of the 

light rare earths. (There are data for only four rare-earth 

aminoacetates; therefore, the trend in the case of this ligand 

can not be stated.) If one compares the stability constants 
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for g-mercaptopropionate (17), 3-aminopropionate (17), and 

3-hydroxypropionate (17), one finds that OH > NH2 > SH. Beta 

substitution of the donor groups is not as favorable for com-

plexation as substitution in the alpha position. The place­

ment of a methyl group on the acetate giving propionate (22) 

decreases the stability constants. 

Let us consider the glycolate homologous series to see 

what various alkyl substituents do to the a-hydroxycarboxy-

lated ligands' affinity for rare-earth cations. Those ligands 

that have been studied so far are lactate (MG) (18, 19, 21, 

25, 26), ethylglycolate (EG) (27), iso-propylglycolate (IG) 

(28), tertiarybutylglycolate (t-BG) (28), hydroxyisobutyrate 

(MMG) (19, 21, 25, 26, 29, 30), methylethylglycolate (EMG) 

(27, 31), methylpropylglycolate (MPG) (31), me thy1isopropy1-

glycolate (IMG) (28), methyltertiarybutylglycolate (t-BMG) 

(28), diethylglycolate (EEG) (27), 1-hydroxycyclopentanecar-

boxylate (HOP) (32), and 1-hydroxyeyelohexanecarboxylate (HCH) 

(33). If one refers to the ligands as substituted glycolates, 

the stability sequence with the light rare earths is : 

dimethyl-% methyl-S unsubstituted > methylethyl-g tetra-

methylene- =ethyl- > isopropyl- > methyl!sopropyl- > 

diethyl- > t-butylmethyl- > t-butyl- > pentamethylene > 

ethylisopropyl- glycolate. However, the same sequence is not 

followed with the heavy rare earths. For the yttrium-group 

rare earths the sequence is instead dimethyl- > ethylmethyl- > 
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diethyl- > methyl- > unsubstituted = tetramethylene-=ethyl- > 

isopropylmethy1- > ethylisopropyl- > t-butylmethyl- > 

t-butyl- > pentamethylene- glycolate. The change in the 

stability trend (when this change occurs) usually takes place 

at europium. In general, the more alkyl groups the higher 

the stability constant until steric hindrance enters into the 

picture. Thus dimethylglycolate chelates are more stable than 

methylglycolate chelates. However, the ethyl group is bulky 

enough that steric hindrance is beginning to take its toll. 

Other monobasic acids which have been studied as com­

plétants for rare earths are salicylate (17), anthranilate 

(17), and glyoxylate (34). 

Some dibasic acids which have been reported are malonate 

(35)» thiomalate (17), malate (17, 36, 37), aminosuccinate 

(17), oxaloacetate (35), and dlglycolate (38). They are 

listed according to their stability constants, the lowest 

first. 

There is another series of compounds which shows how 

dentate character affects stability constants. As we go 

through the series, the dentate character increases from three 

on up, thus the log (3̂  varies from four to twenty. They are 

iminodiacetate (IMDA) (39, 40), ethylenediamine-N-N'-diacetate 

(EDDA) (41), N-hydroxyethyliminodiacetate (HIMDA) (42), 

nitrilotriacetate (NTA) (43-45), N-hydroxyethylethylenediamine-

N,N',Nf-triacetate (HEDTA) (46-48), 1,2-bis[2-di(carboxy-
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methyl )aminoethoxy7ethane (ME) (49), 2,2*-bis jdi(carboxy-

methyl)amin̂  diethylether (DE) (49), 1,2-diaminocyclohexane-

N,N,N*,N'-tetraacetate (DCTA) (50), propylenedlamlnetetra­

acetate (51), ethylenediaminetetraacetate (EDTA) (52, 53)* 

diethylenetriamine-N,N,N*,N',N'-pentaacetate (DTPA) (39* 5*0» 

It is very difficult to compare them in any other way than 

just dentate character because the ionic strength is not the 

same. 

Another series which is in the literature is ligands 

which have nitrogen in the ring. They are in order of their 

stability a-picolinate-N-oxide (55)* picolinate (55, 56), 

6-methyl-2-picolyliminodlacetate (57), 2-picolyliminodiacetate 

(57), and 2,6-pyridinedicarboxylate (58). 

Others have been done such as acetylacetonate (59, 6o) 

as well as mixed complexes of HEDTA with INDA, HIMDA, EDDA 

(61). There are complexes that have been studied in other 

than aqueous media, and many ligands that have been studied 

in conjunction with only one or two rare earths which are not 

mentioned in this review. 

In Figure 1 there are several examples of stability con­

stants plotted against 1/r. This graph illustrates the dif­

ficulty in making generalizations about the stability con­

stants. For all complexes studied so far, the gadolinium 

complex is less stable than would be expected from the elec­

trostatic model. There is no single position for yttrium. 

On the basis of a simple electrostatic model, yttrium should 
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Figure 1. One over the lonio radius in angstroms versus the logarithm 
of the first stability constants of the rare-earth 

a acetate 

b a-hydroxyisobutyrate 

c EEDTA 

d EDTA 



www.manaraa.com

20.0 

18.0 

16.0 

14.0 

8 

3.0 

2.0 
I 

i|—I—I rr 

1 J L 1 
La Ce Pr Nd Pm Sm 

0.940 0.990 1040 

1 J L 1 jJSL 
Tb Dy 

1.090 
Ho Er Tm 

1.140 
Yb Lu 

1.190 



www.manaraa.com

11 

fall between holmium and. thulium. However, yttrium sometimes 

seems similar to the heavy rare earths, at other times it is 

found to compare with the light rare earths. With three 

ligands, acetic acid, methoxyactic acid, and mercaptoacetic 

acid, yttrium has the smallest stability constant of any of 

the rare earths. 

Although it is difficult to make generalizations about 

rare-earth stability constants, it is even more difficult to 

interpret them. There are four considerations to explain the 

trends. The first, historically, is crystal field effect. 

This states that the gadolinium complex has no crystal field 

stabilization; thus its lower value. It also states that the 

yttrium complex does not fall where it is supposed to because 

it has no crystal field stabilization. However, the yttrium 

complex should always be more stable than the gadolinium com­

plex. This is not always the case. For all complexes studied 

there is a regular change in log with increasing atomic 

number for the light rare earths. However, if there is a 

regular change in log for the heavy rare earths, it is not 

the same as the change for the light rare earths with the same 

ligand. In many cases there is no regular change in log 

for the heavy rare earths. 

The second consideration is steric factors. Either the 

ligand is too large to let another group come in easily or 

the ligand cannot adapt to the smaller metal ions. 

The third consideration is a coordination number larger 
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than six. In the past the coordination number of six has been 

assumed by many authors. However, there is an increasing 

impressive array of evidence that the true coordination number 

is larger than six. The following experimental observations 

are significant. 

1. Many solid salts contain more than six solvate mole­

cules or donor groups per cation. The crystal structure of 

Ln(Br03)3.9H20 (62), ln2(80̂ )3.9H20 (63), 1*1(02̂ 0803)3.9̂ 0 

(64), and 1*12(80̂ )3.8H20 (65) have been determined. All con­

tain the grouping LnĈ O)̂ 3 which has a trigonal prismatic 

geometry with three water molecules opposite the rectangular 

faces. A second form of 1*12(80̂ )3.9H2O (66) contains the 

grouping Ln(H20)506~9, which is two interpenetrating trigonal 

prisms and requires a coordination number of twelve. 

2. The crystals of some 6-hydrates do not contain the 

grouping Ln(H20)£+3 (67). The compound GdĈ .ô̂ O, and pre­

sumably other isomorpheus salts of this composition, has the 

grouping Gd(H20)5Cl2+, a square antiprismatic arrangement of 

coordination number eight. 

3. The formation of complex ions such as Ln(BCH0HC02)4 

(18, 19), In(cit)n(3-3n) (68, 69), Ln(NTA)2"3 (45, 70), 

Ln(DTPA)"2 (39, 54), In(HEDTA)(IMDA)"2 (61), In(glue.)+2 (71, 

72), and Ln(ECP)̂ "̂  (32), where more than six donors exist 

for each I*i+3 ion, probably requires coordination numbers in 

excess of six. 
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4. The ability of certain complex species to add addi­

tional ligands, e.g., to form Ln(HEDTA)(IMDA) (61), Ln(NTA)2" 

(45, 70), or Ln(HEDTA)(OH)" (73, 7*0 again indicates coordina­

tion numbers larger than six. 

5. The existence of the species HLn(EDTA)(H20)n (16, 

75, 76), Ln(EDTA)(H20)m~ (16, 75, 76), Ln(glycolate)3(H20)s 

(21), and Ln(lactate)3(H20)r (21) and the commonness with 

which water appears in the derivatives of other complexes 

require a larger coordination number than six. 

6. The crystal structure of a number of compounds that 

are not complexes indicate clearly that, irrespective of oxi­

dation state, these cations are most commonly associated with 

7-12 nearest donor neighbors. 

The problem of coordination number can best be solved by 

determination of the crystal structures of representative 

complex species. A promising beginning shows a ten-coordina-

tion in the compound HLa(EDTA) (̂ 0)4.3̂ 0 and nine coordina­

tion in the La(EDTA) (^0)3" (77). 

The fourth consideration is the change in coordination 

number of the solvent layer in contact with the metal ion. 

This seems to be one possible explanation for the double 

series observed with the variation of properties such as 

activity coefficients, transference numbers, heats of dilu­

tion, partial molar volumes, and partial molar compressibil­

ities for a number of rare-earth salts (78) as well as the 



www.manaraa.com

14 

double series found in the AH0, TAS° data reported for EDTA 

(79), NTA (80), diglycolate (81), dipicolinate (81), acetate 

(82), glycolate (82) and thioglycolate (82). The trends in 

AH° and TAS° for all ligands are very much the same. The 

rare-earth diglycolates are used as an example see Figures 2 

and 3. This indicates that the variation is caused mainly by 

some property of the metal ion itself. The ordered water 

structure around the metal ions serves as an entropy source, 

and the magnitude of the entropy change depends mainly on the 

number of water molecules replaced by the ligand. An increase 

in the number of water molecules replaced will result in an 

increase of entropy accompanied by a change in enthalpy. 

Thus, this could be the cause of the double series. 
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Figure 2. AĤ  for the formation of rare-earth 

diglycolates 
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Figure 3. TASi for the formation of rare-earth 
diglycolates 
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MATHEMATICAL COMPUTATION OP STABILITY CONSTANTS 

General Approach 

What is going on chemically in solution when complexes 

are formed? A solvated ligand approaches a solvated cation 

and replaces some of the water molecules around the metal 

ion. Since an investigator cannot determine the exact number 

of waters, hydration will not be taken into account in ex­

pressing the following equilibria. Neither will this author 

show the charge of the species in the following equilibria, 

since the reaction is not a redox reaction. The various 

equilibria between the metal ion, B, and the ligand, A, can 

be represented as follows: 

B + A  ̂BA , (2) 

BA + A ̂  BA2 , (3) 

• . . , 

BAN_2. + -A BAN * (4) 

for mononuclear complexes, and 

pB + qA z=2 BpAq (5) 

for polynuclear complexes. However, polynuclear complexes 

have been shown not to exist in any appreciable quantity for 

acetate (12, 13), glycolate (20), isobutyrate (30), a-hydroxy-

isobutyrate (30), trihydroxyisobutyrate (30), methylethylgly­

colate (31), methylpropylglycolate (31), propylglycolate (31), 

and diglycolate (38). 
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According t-o the Debye-Euckel theory, the activities of 

ionic species in a solution are primarily a function of the 

ionic strength of the solution. The work in this dissertation 

was done at a constant high concentration of non-participating 

background electrolyte, and consequently concentrations based 

on stoichiometry will be used instead of activities. 

The equilibrium constants representing equations 2 

through 4 can be written 

BL = TBHAT ' (6) 

(BA?) 
b2 - (BA)(A) » (7) 

• • • I 

(BA u) 
" iBAu.i)(A) ' (8) 

where the parentheses represent the concentration of the 

species contained therein. The constants bn are referred to 

as stepwise formation constants. The overall constants may 

also be written for the reactions 

B + A BA , (9) 

B + 2A ̂  BA2 , (10) 

• • • j 

B + NA %== BAN . (11) 

These constants are 
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si " TBTTAT • (12) 

_ (3AZ) 
Pg — ' 

(B)(A)2 
(13) 

(14) 

Obviously, 

(15) 

where B0 is defined as unity. 

The following definitions must be made: 

C& = total ligand concentration in solution 

a = free (uncompleted) ligand concentration 

Cg = total metal concentration in solution 

C'y = free (uncompleted) metal concentration. 

The quantities and Cg are very easy to come by; however, 

one must determine either a or 0%. The quantity a is deter­

mined in this research. Bjerrum defines the mean ligand 

number n as the concentration of the completed ligand divided 

by the total concentration of metal or 

From material balance, 
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Ca = a + Cfc 2 n3nan , (19) 

CB = Cb 2 3nan . (20) 

CA = a + (BA) + 2(BA2) + 3(BA3) + ... N(BAN) (1?) 

CB = (B) + (BA) + (BA2) + (BA3) + ... (BAN) . (18) 

It is readily seen that 

N 
2 
n=0 

N 
2 
n=0 

Equation 16 then becomes 

-fï-V 
n=0 

Equation 21 must be solved in order to find the stability 

constants. 

Calculation of Ionization Constants 

In order to solve equation 21, we must know n and a. 

When working with carboxylic acids as ligands, we use hydro­

gen ion concentration to determine a. Hydrolysis is assumed 

not to occur since solutions in this work were between pH 2 

and pH 4; and at such low pH values, hydrolysis is negligible 

(10, 11). The possibility of hydrolysis was studied for ace­

tate and glycolate and was not found to occur (12, 13, 21). 

It also has been shown that rare-earth ion does not complex 

with undissociated carboxylic acid (12, 13, 19). Thus knowing 
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the ionization constant, one can determine a. 

The following definitions mus£ now be introduced: 

oy = the ionization constant of the jth proton 

Kj = the jth stepwise ionization constant 

thus 

CA = total ligand concentration 

Cg = total hydrogen concentration 

Cjja = all sodium ion concentration except sodium ion 

from NaCIOz#, 

(Ĥ ) = the concentration of free hydrogen. 

For a monobasic acid, one has 

al - K1 = ' (22) 

CA = (HA) + (A") , (23) 

CH = (HA) + (H+) . (24) 

Thus we have three equations and three unknowns, which is 

easy tô solve. Here is equation 22 with experimentally deter­

mined quantities 
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= (H*) (Cya + (E+) ) 

'H 
°1 = K1 = (ch-(bV • <25) 

For a dibasic acid, one has 

al = K1 = ' (22) 

otg = , (26) 

CA = (H2A) + (HA") + (A=) , (2?) 

CH = 2(H2A) + (HA-) + (H+) . (28) 

Thus we have five unknowns and four equations. After the 

proper substitutions of one equation into another, one 

obtains the equation 

(E+)2(CEa + (H+)) = %(S+)(CA - Cm - (B+)) + , 

(2Ca - Cjja - (H+)) (2CA - CNa - (If))  ̂

which is an equation of a straight line with slope of Kg an<* 

intercept of K̂ Kg. This equation was solved by an unweighted 

least square method using a digital computer. 

Calculation of n and a from Potentiometrio Data 

For a monobasic acid, we have 

* • •  
thus 

(A") - a - 'I"*;'**» (30, 
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and 

H = =«* + <B+) ' a . (31) 
=B 

If there is excess acid, Cp, in the metal perchlorate solu­

tion, it is accounted for in equations 30 and 31 as follows: 

_ %(Cg + C* - (g*)) 

(H+) 

n = cNa ~ Gt> + (2+) - a 
CB 

(32) 

(33) 

For a dibasic acid, we have 

*1 

a2 - K1K2 - ̂ H2it ̂ ' (26) 

(H2A) = CH/2 - (HA-)/2 - (E+)/2 . (28) 

With the proper substitution of one equation into another, 

one obtains the following equation 

(A=) - » - °1°2(CH - (H+)) _ (34) 
2a1(H+)2 + a2(HT) 

The total amount of ligand in solution available for complex-

ing is 

(A=) = CA - Cg/2 + (H+)/2 - 1/2(HA") , (35) 

(A=) = CA - CH/2 + (S+)/2 - . (36) 

Since total ligand minus free ligand equals complexed ligand, 
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- CA - Ch/2 + (H+)/2 - (H+)(A-)/2di - (A") 
n  =  —  .  ( 3 7 )  

CB 

Substituting from equation 34 for Cg/2 + (H+)/2 

cA - (a=)/2 + 2gj-(gt)% isnm. (A=) 

H  =  -  i  ^ ^  ,  ( 3 8 )  

and collecting like terms and putting over a common denomin­

ator 

_ a2(H+) + 2a1(H+)2] _ 

« = 2 \ ^ 1 , (39) 
CB 

and again collecting like terms, n finally is 

, 2  
C A- U-) 

n = / . (40) 
CB 

For both monobasic and dibasic acids, n and a were calculated 

using a digital computer. 

Calculation of the Stability Constants 
from n and a 

There are many methods of calculating stability constants, 

In this dissertation two will be discussed: 1) Fronaeus' 

method (83) as an example of graphical technique, and 2) the 

least squares method (84) used in this research as an example 

of the computer technique. In Fronaeus1 method, we define 
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N 
X = 2 3na , (41) 

n=0 

x' =i =  jo n B^ n" 1  - ««> 

Then inserting these into equation 21 

BU 
2 0na 
n=0 

we have 

n = aX'/X . (43) 

This may be solved to give 

&i 

(44) nX = J (n/a)da . 
0 

The integral in equation 44 may be evaluated graphically or 

numerically to give sets of data (Xj., a*). The stability 

constants P2, etc. can now be calculated by successive 

extrapolation to a = 0 of the function X%, X2, etc. 

Xx — ̂  a *** — 3]_ + &2& * ••• (45) 

X2 = —i = p2 + ĝ a + ... . (46) 

The least squares method used in this research was 

developed by W. B. Stagg (84) using the weighting factor 

which was described by Sullivan et al. (85) and Bydberg (86). 
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If we take equation 21 

N 
2 n3nan 

H = ̂   ̂ (21) 

2 
n=0 

and crossmultiply 

N n N 

2 nCBPna = 2 (CA - a) 3nan (4?) 
n=0 n=0 

N 
and then subtract 2 nCg0na" from both sides and combine like 

n=0 

terms, we get 

N a 
2 (CA^ - A^ - NCG^) 3NA^ = 0 . (48) 
n=0 

The 1 was inserted to denote that for every experimental point 

there is a discrete CA, a, and Cg. Because of experimental 

error, in practice, equation 48 does not exactly equal zero. 

The residual of a given set of data (CAl - â  - nCBi) is given 

by 

N 
UI = 2 (CA^ - A^ - NCGX) @NA . (49) 

n=0 

The weighted sum of the squares of these residuals is then 

1 2 
3 = 2  W i t h  ( 5 0 )  

1=1 

where the summation is carried over I sets of data. If we 

minimize this sum with respect to each of the parameters, 

/ 
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that is, 

c?s/àen = o , (51) 

we have N equations in the 3n which then may be solved using 

Cramer1 s rule of matrix algebra. In the matrix technique, 

the standard deviation of each of the parameters may be cal­

culated from the diagonal elements of the inverse of the 

matrix of the coefficients of the 0n's. This deviation is 

given by 

en = -jS" (52) 

where rnn is the diagonal element of the inverse coefficient. 

These deviations are the errors of internal consistency of 

the data points used to compute each parameter and are con­

siderably smaller than the more realistic maximum possible 

error. The systematic error, which may have occurred in 

determining acid dissociation constants, concentrations of 

metal perchlorate, ligand buffer solutions, and so forth, are 

not reflected in these deviations. When computations were 

made in which the input data were varied within their esti­

mated maximum limits of error, it was found that the relative 

errors in Bi, Bg* 3̂ could be as great as + 10#, + 25#» and 

+ 50#, respectively for a three parameter system (85). For a 

two parameter system, the relative errors could be as great 

as + 25# and + 50# for 3̂  011(1 Bg respectively (84) • 

The choice of weighting factor is arbitrary. The 
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weighting factor used in this research is 

"i = (53) 

where 

= (àUi/èâ ajj) , (54) 

p "being the estimated relative probable error in the free 

ligand concentration. Thus each point is weighted with re­

spect to the variance of the residual with free ligand concen­

tration. Consequently, the first data points are weighed 

more heavily than the later. 

In practice, after the n's and a*s are calculated, they 

are looked over to detect any discrepancies. If there are 

any, these points are removed. Then the value of the total 

ligand concentration, the free ligand concentration, and the 

total metal concentration and estimated 3n*s are fed into the 

computer. The IBM ?0?4 calculates 3n's until the 3n's differ 

from each other by less than one part per thousand and until 

the standard deviation in each parameter was of smaller mag­

nitude than the given parameter. The limit on the number of 

iterations is 50 i however, it was found that if these condi­

tions were to be found they were found in no more than 10 

iterations. The program then was called upon to calculate 

n from the 3n's it had calculated. The experimenter then 

compares the calculated n to the experimental n to see if the 

3n*s calculated correspond to the experimental conditions. 
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EXPERIMENTAL DETAILS 

Preparation of Reagents 

Bare earth perchlorate solutions 

The stock solutions of approximately 0.5 M, which were 

the same solutions used "by Stagg and Powell (84) in the 

determination of the rare-earth isobutyrate, a-hydroxyiso-

butyrate, and a, 3 » 3 '-trlhydroxyisobutyrate stability con­

stants, were diluted to 0.1000 M. The cerium solution had 

excess perchloric acid to stabilize the trivalent state. 

Promethlum was not done. 

Sodium hydroxide solution 

An approximately 1 M carbonate-free sodium hydroxide 

solution was prepared by the method of Powell and Hiller (87) 

and standardized against potassium acid phthalate. 

Sodium perchlorate solution 

An approximate 1 M sodium perchlorate was prepared by 

neutralizing to a pH 6 perchloric acid with sodium hydroxide. 

This solution was then run through ion-exchange column which 

had Dowex-50 resin in the sodium form. This was done to in­

sure there were no hydrogen ions as well as other metal ions 

in the solution. The solution was analyzed by passing ali­

quot s through a hydrogen-form Dowex-50 bed and titrating the 

eluate with standard K0H. 
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Perchloric acid reference solution 

Approximately 0.1 M perchloric acid was prepared by 

dilution of the 70% acid and standardized against sodium 

carbonate. An exactly 0.001 M solution of this was prepared 

by dilution with distilled water and sufficient sodium per­

chlorate to.give an ionic strength of 0.1 M. 

Mandelate buffer 

Mandelic acid (Eastman Organic Chemicals) was recrys­

tallized three times from acetone-petroleum ether mixture. 

The equivalent weight was determined by titration with a 

standard K0H. It was found to be 151.2 (calc. 151.9). Two 

buffers were made up. Both had the same ratio of NaA/HA 

which was one. One buffer was 0.5 M while the other was 

0.05 M. It was made up by weighing the mandelic acid, neu­

tralizing It partially with standard sodium hydroxide. The 

excess acid was then titrated with standard K0H. 

Qulnlc acid 

The equivalent weight of qulnlc acid (K & K Chemicals) 

was determined by titration with standard K0H to be 194.8 

(calc. 192.2). A 0.2 M solution of qulnlc acid with a ratio 

of NaA/HA of one was made up by weighing the qulnlc acid, 

neutralizing it partially with standard sodium hydroxide. 

The excess acid was then titrated with standard K0H. 
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Dilactic acid. 

The diethyl lactate (88) was prepared from ethyl lac­

tate, sodium, and ethyl a-bromoprop 1 onate "by Dr. Jack E. 

Powell. The diethyl lactate fraction collected at 20 mm 

from 115-125°C had three impurities when checked "by GPC. The 

ester was redistilled and the 103-104°/7 mm fraction was 

collected. It was greater than 99# pure by GPC. Infra-red 

and NMB were also done on the ester. The ester was then dis­

solved in 500 ml absolute ethanol. Eighty ©• of NaOH were 

dissolved in 1500 ml hot absolute ethanol. While the ester 

was refluxing, the NaOH solution was filtered directly into 

It. The sodium dilactate precipitate was filtered and washed. 

The sodium dilactate was dissolved in 2 1. of water and 

passed through a four equivalent Dowex-50 bed in the hydrogen 

form. Approximately 5.5 1. of dilactic acid were obtained. 

Since the dilactic acid is very hydroscopic, and water could 

not be removed, it was assumed no impurities were added in 

converting the ester to the acid. A 0.1 M solution of dilac­

tic acid with the ratio of NagA/HgA of one by partially neu­

tralizing a solution of dilactic acid with standard sodium 

hydroxide. The excess acid was titrated with standard K0H. 

Technique 

The ionization constants of the ligand must first be 

determined under the same conditions as one is going to deter­
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mine the stability constants. Twelve to eighteen solutions, 

whose total volume was 50.0 ml, were prepared varying the C& 

concentration from 0.1 mmoles to 5.0 mmoles, except for 

dilactic acid where CA varied from 0.05 to 2.0 mmoles. In 

the case of dilactic acid, there were also six solutions with 

the ratio NagA/HgA varying from 0 to 4. All these buffer 

solutions had the same total concentration C& = 0.5 mmoles. 

The solutions to determine the stability constants had the 

same varying C&; however, the Cg was kept constant at 0.2 

mmoles. For quinic acid, dysprosium was also run where Cg = 

0.3 mmoles. Both ionization and stability constants were 

first determined roughly, and then new solutions were pre­

pared in which the amount of sodium perchlorate added was 

varied slightly to compensate for the expected change in 

ionic strength. 

The hydrogen concentration was determined using a Beckman 

Research pH Meter whose relative accuracy is 0.001 pH and its 

repeatability is 0.0005 pH. Glass and calomel electrodes were 

used. To avoid activity coefficient corrections, standard­

ization was done frequently with a perchloric acid solution 

of known pH adjusted to n = 0.1000 with sodium perchlorate. 

Solid Chelates 

The method of preparation used was to stir stoichiometric 

(3:1) quantities of the sodium salt of quinic acid with rare-
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earth chlorides. The solid was filtered under vacuum and 

washed with acetone until chloride-free. They were allowed 

to air dry before determining the water of hydration using 

the thermobalance technique. The temperature range was from 

room temperature up to 500°C. The solid was then placed in 

a muffle furnace and ignited to the oxide. 
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EXPERIMENTAL RESULTS 

The Mandelate Complexes 

The results obtained for the rare-earth mandelates are 

shown in Table 1 and Table 2. The difference in the two 

tables is that the results in Table 1 are calculated by using 

a constant while the results in Table 2 are calculated 

using a variable K̂ . 

Table 1. Stability constants of the rare-earth mandelate 
complexes (T = 25.0°C; ji = 0.1 (NaClOij,) ; % = 
6.110x10-4) 

Metal @3x10 ~2 PgxlO"̂  b2xl0~2 B̂ IO"2* 

La 1.84 + 0.06 0.97 + 0.06 52 + 4 2.16 
Ce 2.24 + 0.04 1.97 + 0.05 88 +. 3 2.67 
Pr 2.90 + 0.05 2.99 + 0.07 103 + 3 3.70 
Nd 3.19 + 0.03 3.92 + 0.05 123 + 2 4.20 
Sm 3.56 + 0.06 6.35 + 0.11 178 + 4 4.58 

Eu 3.45 + 0.20 7.23 + 0.70 209 + 24 4.97 
Gd . 3.38 + 0.12 6.96 + 0.44 206 + 15 4.88 
Tb 3.92 + 0.18 8.72 + 0.96 223 + 27 5.51 
Dy 4.02 + 0.07 11.7 + 0.7 290 + 18 5.95 
Ho 4.30 0.14 13.9 0.4 325 + 11 6.49 

Er 4.61 + 0.14 18.2 + 0.8 396 + 21 7.07 
Tin 4.52 + 0.45 28.1 + 3.4 621 + 97 7.90 
Yb 7.04 + 0.49 28.4 + 4.4 403 + 68 9.65 
Lu 6.69 + 0.24 36.9 + 2.3 551 + 39 10.00 
Y 3.64 + 0.12 10.8 + 0.5 298 + 16 5.43 

Ĉalculated as if only one complex present. 
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Table 2. Stability constants of the rare-earth mandelate 
complexes (T = 25°C; p. = 0.1 (NaClÔ )) 

Metal gxxlO"2 P2xl°-if b2xl0~2 

La 1.91 + 0.07 0.64 + 0.06 34 + 4 
Ce 2.32 + 0.06 1.52 + 0.08 66 + 4 
Pr 2.98 + 0.03 2.45 + 0.04 82 + 2 
Nd 3.30 + 0.03 3.25 + 0.05 99 + 2 
Sm 3.62 + 0.04 5.65 + 0.08 156 ± 3 

Eu 3.44 + 0.19 6.65 + 0.66 193 + 22 
Gd 3.36 0.12 6.49 + 0.43 193 + 16 
Tb 3.93 + 0.24 7.95 1.28 202 ± 35 
Dy 3.99 + 0.11 11.1 + 0.6 278 + 18 
Ho 4.28 + 0.07 13.3 + 0.4 311 ± 11 

Er 4.58 + 0.13 17.4 + 0.8 380 + 21 
Tm 4.48 + 0.44 27.2 + 3.3 606 ± 95 
Yb 6.99 + 0.48 27.4 + 4.3 392 ± 67 
Lu 6.66 + 0.23 35.6 + 2.2 535 ± 38 
Y 3.63 + 0.12 10.3 + 0.5 282 + 16 

This was done because it was noticed that there was a 

regular variation in the ionization constant as determined 

experimentally which can be seen in Figures 4 and 6. This 

trend has been found in all the ionization constants deter­

mined in this laboratory. To vary the ionization constant 

one used the a calculated with constant and read off the 

figure the appropriate corresponding to that a. The n 

and a values were next recalculated using the variable K%, 

and then the 0 values were recalculated. In most instances 

the variable method has provided a better fit of the 0's 

to the experimental results. That is, n and a calculated are 
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Figure 4. Ka versus a for mandelic acid 



www.manaraa.com

6.400 

6.200 

6.000 

5.800 

VoJ VO 

300 400 500 



www.manaraa.com

40 

closer to n and a experimental. 

For mandelate complexes, using a variable does not 

improve the precision, but the fit is better. The precision 

is probably not improved because the maximum n, for europium 

through lutetium, is no higher than 0.?. For lanthanum 

through samarium the maximum n is 1.5. That is for europium 

through lutetium, the data do not warrant calculating a second 

stability constant. The maximum obtainable n is low because 

of precipitation of the chelate with samarium through lute­

tium. 

Because of this equation 21 was rewritten 

—â— = Pl - e2 ;2 - + 2 !L=_s ê "-1 . (55) 
(1 - n)a (1 - n) n=3 1 - n 

It has been found experimentally that only after n of 0.4 

does &2 influence the calculations. Therefore, it was assumed 

that was negligible up to n equal 0.4. Equation 55 for 

data up to n = 0.4 then reduces to 

= 3X . (56) 
(1 - n) 

Values of 3]_ were recalculated using equation 56. These 3̂  

values are shown in Table 1 and Figure 5. 

Polynuclear complexes were assumed to be absent, since 

they were not present in other glycolate systems (20, 30, 31). 
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Figure 5« One over the ionic radius in angstroms versus the logarithm 
of the first stability constants of the rare-earth 

a) mandelate.(calculated assuming two complexes) 

b) tertiarybùtylglycolate 

c) mandelate (calculated assuming one complex) 

d) ethylglycolate 
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The Quinate Complexes 

Again the stability constants were calculated using both 

constant as listed in Table 3 and variable as listed in 

Table 4. A four parameter program was tried on the heavy 

rare-earths* data, since n went up to 2.8-2.9, to see if this 

would provide a better fit. Since the four parameter program 

did not improve matters, only the B values calculated using 

the three parameter program are reported. 

Because of the hydroxyl groups on the 3,4,5 positions, 

it was thought quinic acid might possibly form polynuclear 

complexes. If a system is mononuclear, n is a function of a 

alone; but, if polynuclear complexes are present, n is a 

function of the metal ion concentration as well as a. Conse­

quently, dysprosium was studied at two concentrations. A 

plot of n versus a shows no appreciable difference between 

the data for the two metal concentrations. See Figure 8. 

Therefore, it was assumed that no polynuclear complexes were 

formed. 

From the thermal decomposition data for the heavy-rare-

earth quinates, it appears that there are no water coordinated 

to the metal. See Table 5* The light-rare-earth quinates 

were not studied because only jelly-like substances could be 

obtained. 
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Table 3. Stability constants of the rare-earth qulnate complexes (T = 25°C; 
fi = 0.1 (NaClOjj,) ; K = 4.35x10-4) 

Metal 63x10-2 BaXlO'̂  B3XIO-6 b2 b.3 

La 2.22 + 0.06 2.14 + 0.13 0.52 ± 0.06 96 + 6 24 + 3 
Ce 3.22 + 0.11 3.82 + 0.79 1.31 ± 0.16 118 + 10 34 + 5 
Pr 3.65 + 0.09 6.09 + 0.29 1.88 + 0.17 167 + 9 31 + 3 
Nd 4.15 + 0.12 7.41 + 0.3o 2.14 ± 0.22 178 + 10 28 + 3 
Sm 5.30 + 0.12 9.93 + 0.44 4.56 + 0.32 I87 + 9 45 + 4 

Eu 4.89 + 0.09 9.59 + 0.33 4.85 + 0.24 196 + 7 51 + 3 
Gd 4.55 + 0.14 9.18 + 0.52 4.34 + 0.37 202 + 13 47 + 5 
Tb 4.74 + 0.12 12.4 + 0.5 4.59 ± 0.34 261 + 12 37 + 3 
Dy 5.81 + 0.16 16.6 + 0.8 7.27 + 0.68 284 + 14 44 + 5 
Ho 6.53 + 0.18 17.5 + 0.8 10.7 ± 0.7 268 7 14 61 + 5 

Er 6.63 + 0.14 21.4 + 0.5 11.9 ± 0.5 322 + 10 55 + 3 
Tm 7.56 + 0.25 27.3 + 1.2 19.4 + 1.2 359 + 20 71 + 6 
Yb 8.77 + 0.25 36.2 + 1.3 32.5 ± 1.5 413 + 20 89 + 5 
Lu 9.42 + 0.44 44.3 + 2.5 45.2 ± 3.4 471 + 35 101 + 9 
Y 4.89 + 0.17 12.4 + 0.6 4.56 + 0.45 254 + 16 37 + 4 
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Table 4. Stability constants of the rare-earth qulnate complexes (T = 25°C; 
|i = 0.1 (NaClOZf) ) 

Metal BiXlO-% p2xl0"*̂  P3XIO-6 b2 b3 

La 2.24 + 0.04 1.83 + 0.07 0.37 + 0.03 81 + 3 20 + 2 
Ce 3.32 + 0.08 3.35 + 0.16 0.97 + 0.08 101 + 5 29 + 3 
Pr 3.58 + 0.12 5.64 + 0.27 1.29 + 0.14 157 8 23 + 3 
Nd 4.07 + 0.12 7.14 + 0.32 1.45 + 0.16 175 + 9 20 7 2 
Sm 5.04 + 0.09 9.61 + 0.33 3.35 + 0.21 191 ± 7 35 + 2 

Eu 4.67 + 0.07 9.17 + 0.25 3.51 ± 0.17 196 + 6 38 + 2 
Gd 4.65 + 0.13 8.44 + 0.34 3.37 + 0.23 182 + 9 4o + 3 
Tb 5.13 + 0.13 11.6 + 0.4 3.40 + 0.30 226 + 12 29 + 3 
Dy 5.52 + 0.09 15.6 + 0.5 5.38 + 0.30 282 + 8 35 + 2 
Ho 6.25 + 0.15 16.8 + 0.6 7.98 '£ 0.50 269 ± 12 47 + 3 

Er 6.33 + 0.13 20.5 + 0.5 8.78 + 0.36 325 + 9 42 + 2 
Tm 7.85 ± 0.19 25.8 + 0.7 15.8 + 0.6 329 + 11 61 + 3 
Yb 8.93 + 0.16 34.7 + 0.6 26.7 + 0.7 388 + 9 77 + 3 
Lu 9.00 + 0.44 43.0 + 2.4 35.8 + 3.0 478 + 35 83 + 8 
Y 4.67 + 0.22 11.8 + 0.6 3.15 + 0.42 253 + 18 26 + 4 
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Figure 6. Ka versus a for quinic acid 
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Figure 7. One over the ionic radius in angstroms versus the logarithm 
of the first stability constants of the rare-earth 

a) 1-hydroxycyclohexanecarboxyla te 

b) qulnate 

c) 1-hydroxycyolopentanecarboxylate 

d) diethylglycolate 
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Figure 8. n versus a for dysprosium quinate 
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Table 5. Data from thermal decomposition of rare-earth 
quinates 

Metal 

Total 
number 
of H20 

Molecular weight 
lost 

Temperature 
(°C) 

Onset of 
degradation 

Dy 3 55.4 
65.2 

(3H20) 54 
140 

222 

Ho 6 52.1 
56.4 

(3H20) 52 
150 

212 

Er 1 12.4 
64.8 

(IH2O) 
ii: 

224 

Tm 1 24.0 
71.8 

(11/2 H20) 
164 

224 

Yb 3 74.1 (4H20) 162 222 

Lu 2 39.2 
71.1 

(2H20) & 225 

Y 3 40.8 
62.9 

(3H20) 40 
156 

219 

The Dilactate Complexes 

An unsuccessful attempt was made to find a way to vary 

(or both and a2). The experimenters who determined the 

stability constants for the diglycolates at g = 1.0 also 

tried to improve their results In this manner, but met with 

little success. 

In calculating the 9 values, the first point was dropped 

systematically because it was impossible to determine a with 
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Table 6. Stability constants of the rare-earth dilactate 
complexes (T = 25°C; p. = 0.1 (NaClOZ*) ; a-i = 
7.71x10-5, a2 = 1.19x10-7) 

Metal Bixl0-5 e2xl0"8 b2xl0"^ 

La 0.69 + 0.03 0.75 + 0.05 0.11 + 0.01 
Ce 1.24 + 0.06 3.09 + 0.20 0.25 + 0.02 
Pr 1.78 + 0.09 7.05 + 0.49 0.40 + 0.03 m 2.25 + 0.12 14.1 + 0.9 0.63 + 0.05 
Sm 3.09 + 0.20 37.5 + 2.7 1.21 + 0.11 

Eu 2.85 + 0.23 46.7 + 3.9 1.64 + 0.19 
Gd 2.42 + 0.16 44.7 + 2.9 1.85 + 0.17 
Tb 2.96 + 0.13 71.0 + 2.7 2.40 + 0.14 
By 3.69 + 0.25 111 + 6 3.01 + 0.26 
Ho 3.89 + 0.34 144 11 3.72 + 0.43 

Er 3.87 + 0.61 207 + 26 5.34 + 1.08 
Tm 4.77 + 0.72 328 + 40 6.88 + 1.34 
Yb 4.71 + 0.97 451 + 69 9.57 + 2.45 
Lu 4.20 + 1.01 556 + 86 13.2 + 3.8 
Y 2.74 + 0.31 79.8 *f 8.3 2.91 + 0.45 

sufficient accuracy for low values of n, since Cg - (H+)«Cjj. 

The difficulty is that is approximately two powers of ten 

larger than l/a^ and a^/a2. A case can be made for dropping 

the first three points in each case; however, since this pro­

cedure did not appreciably change the pn values, the second 

and third points were retained in the calculations. , 

The 0n values were calculated using both the two and 

three parameter programs. Positive 0^ values were obtained 

for samarium, europium, gadolinium, and terbium. However, 

the errors were as large as the 03 values themselves. For 
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the other rare earths, the Qj values came out negative. Thus 

it is only reasonable to respect values for and gg* 

Polynuclear complexes were assumed to be absent since it 

has been shown that they do not form in the case of diglycolic 

acid, even at much higher concentrations. 
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Figure 9» One over the ionic radius in angstroms versus the logarithm 
of the first stability constants of the rare-earth 

a) dilactate at n = 0.1 M 

b) diglycolate at n = 1.0 M 

c) diglycolate at g = 0.1 M 



www.manaraa.com

6.4 

6.2 

6.0 

5.8 

5.6 

m 
o» 5.4 
o 

5.2 

5.0 

4.8 

4.6 

t) 1 1 n—r 

j i î J L I 
La Ce 

0.940 
Pr Nd 
0.990 

Pm Sm Eu Gd 
1.040 

T] r-—i r 

ZCJ 

/ 

I aJL _i_ _L 

b Dy Ho Er Tm Yb Lu 
1.090 1.140 1.190 

Vx 
ON 



www.manaraa.com

57 

DISCUSSION 

It was noticed, as a general rule, that the calculated 

value of n would pass through a maximum and then decrease 

with increased concentrations of buffer when a constant mean 

value of Kg. was used, in spite of the fact that the pH trend 

was apparently normal. In series of similar buffer solutions 

containing no rare-earth ion, it was found that the variation 

in the calculated K& was not random but systematic, i.e., the 

computed K& decreased slightly as the 1:1 salt acid buffer 

concentrations increased, in spite of the fact that the ionio 

strength was held precisely constant by addition of the re­

quired amount of NaClO^. Similar "salt effects" have been 

observed by others. In the case of acetic acid in a per-

chlorate supporting electrolyte, the effect was observed to 

be seven times as great as with other common anions (89). 

In spite of this minor difficulty NaClOjj, was retained as 

the supporting electrolyte, due to the fact that it shows the 

least tendency to form complexes with metal ions. What was 

done to avoid errors, was to use a set of K& values corre­

sponding to the particular llgand anion concentrations present 

in a series of buffers containing a rare earth. Using a vari­

able Ka set had very little effect on the calculated values 

for The effect became much more apparent with pg and 33. 

The calculated n increased with increasing a as predicted by 
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theory and for the most part negative values of even 3̂  were 

avoided. 

Mandelic acid is an analogue of the homologous series 

of monosubstituted glycolic acids which include methylgly-

colic, ethylglycolic, isopropylglycolic and tertiarybutyl-

glycolic. Mandelate complexes for the light rare earths are 

stronger than the corresponding Isopropylglycolate and ter-

tiarybutylglycolate species. However, the mandelate complexes 

of the heavy rare earths are the weakest if one uses the 3̂  

calculated assuming formation of both 1:1 and 1:2 complex 

species; but, if one uses the 3̂  calculated assuming just one 

complexed form, the mandelate complexes for the heavy rare-

earths are about the same stability as the isopropylglyco-

lates, but more stable than the corresponding tertiarybutyl-

glycolates. 

Quinic acid is essentially one of the analogues of the 

series of disubstituted glycolic acids. However, it makes 

more sense to compare it to other cyclicglycolates instead of 

the acyclicglycolates. 

Since the ligands are part of a series where the amount 

of alkyl substitution on the alpha carbon varies, there are 

two different effects that should be taken into account. The 

first is the basicity of the donor oxygen atoms. The induc­

tive effect of an alkyl group alpha to the carboxylate is to 

increase the basicity. Thus alkyl substitution decreases the 
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acid ionization constant. This can be seen in Table 7. This 

electron-releasing contribution causes the basicity of the 

hydroxyl oxygen and, to a lesser extent, the carboxylate oxy­

gens to increase, thus increasing the strength of the complex. 

This can be seen by the fact that glycolate < methylglycolate 

< dimethylglycolate in its affinity for rare-earth cations. 

In contrast to alkyl substitution, replacement of an 

a-hydrogen by a phenyl group increases the acidity by a 

factor of about two. This can be seen in Table 7. Thus 

mandelate ought to be the weakest, which it nearly is. 

Table 7. Ionization constants of some substituted glycolic 
acids 

Acid 
Temperature 

(°C) 11 KlxlQ-4 

Glycolic 20 0.1 2.72 
Methylglycolic 20 0.1 2.33 
Dimethylglycolic 20 0.1 1.61 
Ethylglycolic 25 0.1 2.13 
Methylethylglycollc 25 0.1 1.77 

Diethylglycolic 25 0.1/ 2.38 
Isopropylglycolic 25 0.1 2.03 
Methylisopropylglycolic 25 0.1 1.71 
Tertiarybutylglycolic 25 0,1 1.34 
Methyltertiarybutylglycolic 25 0.1 1.14 

Ethyli sopropylglyco1ic 25 0.1 2.27 
Tetramethyleneglycolic 25 0.1 • 1.10 
Pentamethyleneglycolic 25 0.1 1.02 
Phenylglycolic 25 0.1 6.11 



www.manaraa.com

60 

The second factor is the steric factor. That is, the 

least alkylated group ought to be the most stable especially 

for the second and third groups entering. However, even for 

the first group entering there is steric hindrance because 

its added bulk disrupts more of the oriented water molecules 

around the rare-earth ion aside from those in the primary 

coordination sphere. This can be illustrated by the fact 

that the quinate with all the hydroxy1 groups around the 

cyclohexane ring disrupts less of the oriented water around 

it than does plain 1-hydroxycyclohexanecarboxylate. This is 

because the hydroxyl groups themselves hydrogen bond to the -

water. Because of this quinates are more stable than the 

corresponding 1-hydroxycyclohexanecarboxylate. Nonetheless, 

the ability of quinate to hydrogen bond to the water does not 

make its chelates as stable as those of the 1-hydroxycyclo-

p entane carboxyla t e anion. 

When the size of the substituent groups is increased the 

non-bonded interaction between groups is one of increased 

repulsion which results in an increase in the bond angle be­

tween alkyl groups and a decrease in the HO-C-COOH bond angle. 

Thus dimethylglycolate chelates are more stable than the 

corresponding methylglycolate species because the donor groups 

are closer together and are more readily accommodated by the 

rare-earth cations, particularly by the smaller heavy rare-

earth cations. However, the angle can become too small. 
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Nevertheless, one should generally see a greater enhancement 

of the stability of the heavy rare earths compared to the 

light rare earths with bulkier groups. This is seen, espe­

cially in the case of the diethylglycolate series in Figure 7. 

The EO-C-COOH bond angle should not be diminished greatly by 

groups more bulky than ethyl groups (isopropyl and t-butyl) 

because it can readily be seen that ethyl groups require 

approximately the same space for full rotation as do the iso­

propyl and t-butyl groups. 

In summary, increasing basicity and reduction of the 

bond angle between donor groups Increases the stability of 

the complexes formed with rare-earth cations, although bond 

angle shrinkage can proceed too far for optimum bonding to 

the larger light rare-earth cations. Steric hindrance, on 

the other hand, decreases the stabilities of all the chelate 

species. Steric hindrance is manifested by abnormal lowering 

of the b2 and b̂  values and results In increased ratios of 

b]_ to b2 and bg to b̂ . It is obvious that steric hindrance 

and excessive shrinkage of the bond angle between donor groups 

will eventually negate the beneficial effect of increased 

basicity. 

It is interesting to compare the ratios of the succes­

sive stepwise formation constants. From these one may be 

able to tell something about steric hindrance, coordination 

number, configuration and dentate character. It has been 
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suggested by Bjerrum (90) that the statistical effect related 

to the bn values should be proportional to the number of ways 

of forming the KLq species from the MLn-1 species, divided by 

the number of ways that MLn-i can be formed from by 

splitting off a complete ligand. 

Since the rare earths probably have a coordination number 

greater than six as shown in the review of the literature, the 

statistical effect has been calculated for various eight- and 

nine-coordinated structures. The carboxyl group has been 

actually observed to act as a bidentate coordinating group 

in several transition metal acetate complexes (91, 92). Con­

sequently , the mandelate and quinate ligands could function 

tridentately as well as bidentately. For the light rare 

earths, other than lanthanum, mandelate appears (from b̂ /bg 

ratios) to behave purely as a bidentate ligand. In the case 

of the heavy rare earths, the limited solubility of the che­

lates precludes an accurate determination of 32 so that no 

conclusions should be drawn from the latter b̂ /b2 ratios. 

For the heavy rare earths, mandelate is probably still biden­

tate , although the observed b̂ /b2 ratios are nearer to the 

monodentate than the bidentate value. The stability constants 

are too high for chelation (bidentate behavior) not to be in­

volved. The rare-earth trimandelates, from lanthanum through 

samarium, separate from aqueous solution with three waters of 

hydration; for the rare earths heavier than samarium, the 
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Table 8. Statistical factors in the ratios of the stepwise 
formation constants for various configurations 

Configuration b% : bo b̂ /bg 

Bidentate ligand 

Cubic (8) 12/1 7/2 3.43 
Archimedean antiprism (8) 16/1 9/2 3.56 
Dodecahedron (8) 18/1 89/18 3.64 
Trigonal prism with ends (8) 15/1 21/5 3.57 
Trigonal prism +3 (9) 18/1 11/2 3.2? 

Tridentate ligand 

Cubic (8) 24/1 6/2 7.33 
Archimedean antiprism (8) 8/1* 3/2* 5.33 Archimedean antiprism (8) 

16/1 9/4 7.11 
Dodecahedron (8) 12/1 10/6 7.2 
Trigonal prism with ends (8) 6/1* 3/2* 4.00 Trigonal prism with ends (8) 

16/1 19/16 13.5 
Trigonal prism +3 (9) 8/1 13/8 4.92 

Tetradentate ligand 

Cubic (8) 6/1 1/2̂  12 
Archimedean antiprism (8) 2/1% l/2b 4.0 
Dodecahedron (8) 4/1 (blocks 5 positions) 
Trigonal prism with ends (8) 3/1 (blocks 5 positions) 
Trigonal prism +3 (9) 3/1 (blocks 5 positions) 

Pentadentate ligand 

Dodecahedron (8) 4/1 
Trigonal prism with ends (8) 3/1 
Trigonal prism +3 (9) 3/1 

aAssumed could only form on triangular faces. 

Âssumed could only form on rectangular faces. 
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Table 9» Ratios of successive formation constants of some 
rare-earth complexes 

bi/b2 bi/b2 blA>2 
Metal mandelate IG t-BG 

La 5.7(?) 3.4 
Ce 3.5 2.6 2.4 
Pr 3.6 2.7 2.8 
Nd 3.3 2.9 3.1 . 
Sm 2.3 3.6 8.4(?) 

Eu 1.8 3.7 3.5 
G4 1.7 3.5 3.7 
Tb 1.9 3.4 4.8 
Dy 1.4 3.7 4.3 
Ho 1.4 3.6 4.4 

Er 1.2 3.7 4.7 
Tm 0.74 3.8 4.7 
Yb 1.8 3.8 4.9 
Lu 1.2 4.0 4.8 
Y 1.3 3.5 4.6 

trimandelates are dihydrated. Mandelates in solution could 

"be nine-coordinated in the case of light rare earths, and 

either eight- or nine-coordinated in the case of the heavy 

rare earths, with mandelate behaving bidentately throughout 

the entire series. One can not rule out loss of a coordinated 

water as the complex species in solution condense to form the 

solid compounds. 

It is interesting to note that the b^/bg ratio is too 

low in the case of the heavy-rare-earth mandelates where pre­

cipitation occurred. It could be that w&s simply lowered 
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Table 10. Batios of successive formation constants of some 
rare-earth complexes 

b]/b2 bg/b^ b^/bg b2/b3 b^/b^ b2/b^ b^/t^ bg/bg 
Metal quinate HCP HCH EEG 

La 2.7 4.0 5.01 5.28 2.9 _ _  3.4 _ _  

Ce 3.3 3.5 4.82 5.60 4.5 * — 2.5 —  —  

Pr 2.3 6.9 4.83 5.67 4.1 — —  3.1 —  —  

Nd 2.3 8.6 5.08 7.59 2.8 —  —  3.1 — —  

Sm 2.6 5.5 4.39 4.37 3.0 9.4 4.9 8.2 

Su 2.4 5.1 4.05 4.24 2.2 6.3 6.2 9.2 
Gd 2.6 4.6 4.18 3.71 2.0 3.8 7.5 7.9 
Tb 2.3 8.6 3.44 4.26 1.5 5.4 7.6 9.9 
Dy 2.0 " 7.4 3.27 4.97 1.3 6.5 8.4 8.7 
Ho 2.3 5.7 3.48 4.08 2.5 1.1 8.4 8.0 

Er 2.0 7.6 3.05 5.77 1.8 -1.7 7.9 9.1 
Tm 2.4 5.4 3.15 4.17 1.4 2.2 7.8 8.9 
Yb 2.3 5.0 3.16 4.23 1.3 2.8 8.5 7.9 
Lu 1.9 5.8 3.15 3.77 1.2 2.5 8.0 8.3 
Y 1.8 9.5 3.64 3.96 1.8 7.9 9.3 

too much by calculating two stability constants in the region 

where the n was too low to warrant the second constant. How­

ever, this does not explain the generally low b̂ /bg ratios 

for the quinates. The 1-hydroxycyclohexanecarboxylate series 

also exhibits the same low b%/b2 ratios. Thus it seems for 

quinate that the low b%/b2 ratio is somehow related to the 

cyclohexane ring being present. Curiously, data for the 

1-hydroxycyclopentanecarboxylate does not exhibit this 

effect. In the case of the 1-hydroxycyclopentanecarboxylate, 

it appears that the light rare earths are nine-coordinated 
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and are coupled to a tridentate ligand in a trigonal prism +3 

configuration. The heavier rare earths appear to be nine-

coordinated, as well, but are coupled to three bidentate 

1-hydroxycyclopentanecarboxylate ligands and three molecules 

of water (32). 

Thermogravimetric data reveal no clue regarding the 

structure of the qulnates since In most cases all water Is 

lost below 50°C. It may be assumed that this loosely bound 

water is simply contained in the crystal lattice and is not 

coordinated with the rare-earth cation. It may be presumed 

that the substance lost by the anhydrous solids at around 

l60°C is also water, formed by bimolecular coupling through 

hydroxy1 groups of the quinate groups. 

Although dilactic acid is not a substituted glycolic 

acid, it is a substituted diglycolic acid. It can be seen in 

Figure 9 that dilactic acid does not form chelates with the 

individual rare earths as stable as the diglycolates. Conse­

quently, the addition of methyl groups did not increase the 

chelate stability as observed In the glycolate homologous 

series. However, it did increase the spread in stability 

between the lanthanum chelate species and the lutetium chelate 

species. If the tetramethy1 compound could be made, it might 

be interesting to see whether a further general decrease in 

stability and increase in spread occurred. From molecular 

models it would appear that tetramethyl substitution would 
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lock the coordinating groups into a possible pentacoordinating 

position. 

Comparing the b%/b2 ratios for rare-earth dilactates, 

one is led to speculate that the lactate ligand behave s 

either pentadentately or pseudopentadentately (actually 

tetradentately) in bonding to a nine-coordinated (trigonal 

prism +3) configuration of coordination sites in the case of 

the 1:1 species formed with the light rare earths, lanthanum 

through samarium. In the case of pentadentate bonding one 

would have to assume that the four carboxyl oxygens were 

Table 11. Batios of successive formation constants of some 
rare-earth complexes 

Metal 
bi/b2 bi/b2 b2/b3 

Metal dilactate diglycolate (n = 1.0) 

La 65 28 45 
Ce 50 25 28 
Pr 45 28 31 
Nd 36 25 25 
Sm 26 16 27 

Eu 17 10 22 
Gd 13 7.5 26 
Tb 12 4.7 23 
Dy 12 4.4 20 
Ho 10 4.0 21 

Er 7.2 4.7 29 
Tm 6.9 5.8 46 
Yb 4.9 5.5 100 
Lu 3.2 5.3 200 
Y 9.4 5.3 18 
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rectangularly arrayed and that the ether oxygen was in the 

right position to occupy the coordination site lying outside 

the rectangular face of the trigonal prism +3. In the case 

of pseudopentadentate bonding, the carboxylate oxygens would 

occupy the same positions, but the ether oxygen would not be 

bonded to a coordination site. Instead the fifth coordina­

tion site above the face of the rectangular face of the tri­

gonal prism +3 would simply be blocked by the connecting 

-C-C-O-C-C-chain. That is to say, the entering four oxygen 

donor groups would actually displace five of the nine water 

molecules but would not greatly change the non-planar dis­

tribution of the remaining four. If the natural arrangement 

of the carboxylate oxygens of dilactic acid is planar and 

rectangular, it Is obvious that a second ligand could not 

bond either pentadentately or tetradentately. The high b̂ /bg 

ratios for the light-rare-earth chelates would, therefore, be 

readily explained. The somewhat lower b̂ /bg ratios observed 

with the diglycolates could be explained by the fact that the 

diglycolate ligand is less restrained from twisting and so it 

can be distorted sufficiently to allow tetradentate bonding 

to take place in the case of the second ligand which attaches. 

Nevertheless, in the case of the lanthanum through samarium 

diglycolates, an unusually high b̂ /bg ratio is still noted 

(assuming three positions available to the first ligand and 

only one for the second would lead to a b̂ /bg ratio of 6.0, 
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provided one could disregard the fact that b% would be low 

due to the fact that bonding was pseudopentadentate or higher 

if it were actually pentadentate, and that bg would be lowered 

by the necessity of distorting the ligand). 

The b̂ /bg ratios for europium through erbium (and 

yttrium) dilactates and for samarium through gadolinium di-
J 

glycolates are not far from the value of 12 required for 

tetradentate bonding on an eight-coordinate cubic configura­

tion of coordination sites, while the b]/bg ratios for thulium 

through lutetium (and yttrium) diglycolates are closer to the 

value of four required for tetradentate bonding to the 

square faces of the eight-coordinate Archimedes' antiprism. 

In the case of the heavier diglycolates and dilactates, of 

course, a case could also be made for tridentate bonding on 

the nine-coordinate trigonal prism +3 configuration of sites. 

In any event, one is led to hypothesize a dentate character 

greater than two, if either eight or nine coordination is 

assumed. 
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SUMMABY 

The stepwise formation constants for complexes between 

yttrium, lanthanum, and the rare earths, except promethium, 

and the ligands quinate, mandelate, and dilactate were meas­

ured at 25°C and the ionic strength of 0.1 M (NaClOzjJ . They 

were determined potentiometrically using a Beckman Research 

pH meter. Optimum values of the successive equilibrium con­

stants were computed via a least squares technique using an 

IBM 7074 computer. 

The presence of hydroxy1 groups enhances the stability 

of rare-earth quinates over rare-earth 1-hydroxyeyelohexane-

carboxylates. The mandelates in solution could be nine-

coordinated in the case of the light rare earths and either 

eight- or nine-coordinated in the case of the heavy rare 

earths, with mandelate acting bidentately throughout. Dilac­

tic acid seems to be at least a tridentate ligand if not a 

pentadentate ligand. 
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APPENDIX A: EXPERIMENTAL DATA FOR THE 
RARE-EARTH MANDELATES 

Buffer solutioni a) 0.2495 M mandelic acid 
0.2501 M sodium mandelate 

b) 0.02495 M mandelic acid 
0.02501 M sodium mandelate 

Rare-earth solutions: 0.1000 M rare-earth perchlorate 

Ce+3 solution: 0.100 M Ce+3 
0.002605 M HCIO4 

Sample : Vb ml. of buffer, 2.00 ml. of 0.1 M rare-earth 
perchlorate plus sufficient sodium perchlorate 
and water to make 50.00 ml. total volume at an 
ionic strength of 0.1 M. 

Lanthanum Cerium Praseodymium 
Vb ml -(a) pH Vb ml. (a) pH Vb ml. (a) pH 

1.000 b 3.5750 1.000 b 3.4662 1.000 b 3.5322 
3.000 b 3.3005 3.000 b 3.2379 3.000 b 3.2460 
5.000 b 3.2141 5.000 b 3.1619 5.000 b 3.1615 
7.000 b 3.1741 7.000 b 3.1275 7.000 b 3.1180 
1.000 3.1440 1.000 3.0960 1.000 3.0866 
1.500 3.1206 1.500 3.0825 1.480 3.0719 
2.000 3.1180 2.000 3.0820 2.000 3.0721 
3.000 3.1238 3.000 3.0940 3.000 3.0841 
5.500 3.1499 5.500 3.1310 5.500 3.1279 
7.000 3.1650 7.000 3.1520 7.000 3.1468 
8.500 3.1805 8.500 3.1685 8.750 3.1655 
10.00 3.1961 10.00 3.1855 10.00 3.1830 

Neodymium Samarium Europium 
Vb ml, . (a) DH Vb ml. (a) TDH Vb ml, .(b) pH 
1.000 b 3.5338 1.000 b 3.5120 1.000 3.5080 
3.000 b 3.2345 2.000 b 3.3080 1.500 3.3841 
5.000 b 3.1455 3.000 b 3.2123 2.000 3.3013 
7.000 b 3.1021 4.000 b 3.1552 2.500 3.2485 
1.000 3.0728 5.000 b 3.1199 3.000 3.2301 
1.500 3.0580 8.000 b 3.0622 3.500 3.1768 
2.000 3.0585 1.000 3.0449 4.000 3.1502 
3.000 3.0770 1.250 3.0330 4.500 3.1360 
5.500 3.1205 1.500 3.0300 5.000 3.1139 
7.000 3.1420 1.750 3.0280 6.000 3.0896 
8.500 3.1626 2.000 3.0335 8.000 3.0563 
10.00 3.1778 2.500 3.0419 1.000 a 3.0379 
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Gadolinium 
Vh ml.(b) pH 
1.200 3.4510 
1.500 3.3790 
1.700 3.3484 
2.000 3.3040 
2.500 3.2556 
3.000 3.2101 
3.500 3.1815 
4.500 3.1387 
5.000 3.1221 
6.000 3.9982 
8.000 3:0580 
1.000 a 3.0415 

Terbium 
Vb ml.(b) pH 
1.000 3.4800 
1.200 3.4332 
1.500 3.3730 
2.000 3.2821 
2.200 3.2680 
2.500 3.2382 
2.700 3.2232 
3.000 3.2003 
3.200 3.1848 
3.500 3.1710 
3.700 3.1630 
5.000 3.0979 
7.000 3.0535 

Holmium Erbium 
Vb ml. (b) pK Vb ml.(b) pH 

1.000 3.4880 1.000 3.4859 
1.200 3.4278 1.200 3.4141 
1.500 3.3540 1.500 3.3445 
1.700 3.3185 1.700 3.3100 
2.000 3.2770 2.000 3.2662 
2.200 3.2523 2.200 3.2400 
2.500 3.2239 2.500 3.2100 
2.700 3.2000 2.700 3.1890 
3.000 3,1781 3.000 3.1620 
3.200 3.1621 3.200 3.1485 
3.500 3.1457 3.500 3.1278 
3.700 3.1328 3.700 3.1182 
5.000 3.0-758 5.000 3.0500 
7.000 3.0220 7.000 3.0117 

Ytterbium Lutetlum 
Vb ml. (b) PH Vb ml.(b) PH 
1.000 
1.100 
1.200 
1.300 
1.400 
1.700 
1.900 
2.100 
2.300 
2.500 
2.700 
4.000 
6.000 

3.4580 
3.4182 
3.3895 
3.3619 
3.3340 
3.2685 
3.2405 
3.2079 
3.1859 
3.1620 
3.1427 
3.0704 
2.9930 

1.000 
1.100 
1.200 
1.300 
1.400 
1.500 
1.700 
1.900 
2.100 
2.300 
2.500 
2.700 
4.000 
6.000 

3.4199 
3.3840 
3.3538 
3.3305 
3.3075 
3.2700 
3.2378 
3.2070 
3.1823 
3.1618 
3.1361 
3.0518 
2.9744 

Dysprosium 
Vb ml.(b) pH 
1.000 3.4935 
1.200 3.4285 
1.500 3.3620 
1.700 3.3220 
2.000 3.2860 
2.200 3.2585 
2.500 3.2292 
2.700 3.2130 
3.000 3.1922 
3.200 3.1775 
3.500 3.1560 
3.700 3.1446 
5.000 3.0830 
7.000 3.0370 

Thulium 
vb ml.(b) PH 
1.000 3.4780 
1.100 3.4385 
1.200 3.4110 
1.400 3.3658 
1.800 3.2778 
2.000 3.2545 
2.200 3.2240 
2.400 3.1950 
2.600 3.1780 
2.800 3.1605 
3.000 3.1420 
4.000 3.0821 
6.000 3.0118 

Yttrium 
Vb ml.(b) pH 
1.000 3.5005 
1.200 3.4445 
1.500 3.3761 
1.700 3.3371 
2.000 3.2934 
2.500 3.2350 
3.000 3.1945 
3.500 3.1619 
4.000 3.1330 
4.500 3.1138 
5.400 3.0820 
6.000 3.0670 
8.000 3.6330 
1.000 a 3.0140 
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Ionization constant 
Vfc ml.(a) pH 
1.000 b 3.7280 
3.000 b 3.4370 
5.000 b 3.3740 
7.000 b 3.3249 
1.000 3.2940 
1.500 3.2666 
2.000 3.2520 
3.000 3.2383 
5.500 3.2320 
7.000 
8.500 
10.00 

3.2358 
3.2403 
3.2460 
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APPENDIX B: EXPERIMENTAL DATA FOR THE . 
RARE-EARTH QUINATES 

Buffer solution: a) 0.1003:M quinic acid 
0.1030 M sodium quinate 

b) 0.1006 M quinic acid 
0.1030 M sodium quinate 

c) 0.10004 M quinic acid 
0.09998 M sodium quinate 

Rare-earth solutions: 0.1000 M rare-earth perchlorate 

Ce+3 solution: 0.1000 K Ce+3 
0.002605 M HCIO4 

Sample : V% ml. of buffer, 2.00 ml. of 0.1 M rare-earth 
perchlorate plus sufficient sodium perchlorate 
and water to make 50.00 ml. total volume at an 
ionic strength of 0.1 M. 

(d) 3.00 ml. of 0.1 rare-earth perchlorate. 

Lanthanum Cerium Praseodymium 
vb ml.(a) PH Vb ml.(a) pH Vb ml.(a) pH 
0.500 3.4404 0.500 3.3490 0.500 3.3785 
0.750 3.3579 0.750 3.2765 0.750 3.2930 
1.000 3.3148 1.000 3.2350 1.000 3.2460 
2.000 3.2379 2.000 3.1790 2.000 3.1642 
3.000 3.2205 3.000 3.1605 3.000 3.1505 
4.000 3.2128 4.000 3.1570 4.000 3.1495 
5.000 3.2140 5.000 3.1730 5.000 3.1545 
6.000 3.2140 6.000 3.1815 6.000 3.1540 
7.000 3.2219 7.000 3.1887 7.000 3.1690 
8.000 3.2219 8.000 3.1975 8.000 3.1854 
10.00 3.2318 9.000 3.2060 9.000 3.1950 
13.00 3.2520 10.00 3.2095 10.00 3.2105 
15.00 3.2611 13.00 3.2358 13.00 3.2400 
18.00 3.2765 15.00 3.2425 15.00 3.2497 
20.00 3.2845 18.00 3.2613 18.00 3.2677 
23.00 3.2905 20.00 3.2720 20.00 3.2731 
25.00 3.2941 23.00 3.2860 23.00 3.2782 

25.10 3.2940 25.00 3.2910 
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Neodymium Samarium Europ ium 
Vb ml. .(b) pH Vb ml,(b) pH Vb ml. 1 lb) pH 

0.500 3.3621 0.500 3.3315 0.500 3.3392 
0.750 3.2720 0.750 3.2496 0.750 3.2562 
1.000 3.2270 1.000 3.1990 1.000 3.2060 
2.000 3.1510 2.000 3.1135 2.000 3.1200 
3.000 3.1379 3.000 3.1021 3.000 3.1032 
4.000 3.1293 4.000 3.1019 4.000 3.1019 
5.000 3.1395 5.000 3.1260 5.000 3.1168 
6.000 3.1495 6.000 3.1375 6.050 3.1349 
7.000 3.1678 7.000 3.1450 7.000 3.1371 
8.000 3.1788 8.000 3.1635 8.000 3.1599 
9.000 3.1922 9.000 3.1698 9.000 3.1720 
10.00 3.2005 10.00 3.1835 10.00 3.184? 
13.00 a 3.2369 13.00 a 3.2150 13.00 a 3.2133 
15.00 3.2442 15.00 3.2325 15.00 3.2262 
18.00 a 3.2680 18.00 a 3.2585 18.00 a 3.2525 
20.00 3.2770 20.00 3.2650 20.00 3.2615 
23.00 a 3.2920 23.00 a 3.2835 23.00 a 3.2816 
25.00 3.2970 25.00 3.2915 25.00 3.2845 

Gadolinium Terbium Dysprosium 
Vb ml. . (b) pH Vb ml.(b) pH Vb ml. (c) pH 

0.500 3.3522 0.500 3.3360 0.510 d 3.2410 
0.750 3.2626 0.750 3.2530 0.750 d 3.1530 
1.000 3.2035 1.000 3.1960 1.000 d 3.0900 
2.000 3.1278 2.000 3.1008 2.000 d 2.9862 
3.000 3.1050 3.000 3.0912 4.000 d 2.9375 
4.000 3.1127 4.000 3.0999 7.000 d 2.9892 
5.000 3.1215 5.000 3.1014 10.00 d 3.0540 
6.000 3.1342 6.000 3.1219 15.00 d 3.1300 
7.000 3.1462 7.000 3.1408 20.00 d 3.1837 
8.000 3.1560 8.000 3.1530 25.00 d 3.2165 
9.000 3.1680 9.000 3.1070 0.500 3.2962 
10.00 3.1808 10.00 3.1818 0.750 3.2145 
13.00 3.2116 13.00 3.2168 1.000 3.1560 
15.00 3.2321 15.00 a 3.2399 2.000 3.0620 
18.00 3.2384 18.00 a 3.2585 4.000 3.0665 
20.00 3.2650 20.00 3.2648 7.000 3.1183 
23.00 3.2782 23.00 a 3.2839 10.00 3.1657 
25.00 3.2919 25.00 3.2875 15.00 3.2200 

20.00 3.2534 
25:00 3.2715 
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Holmlum 
vb ml.(b) PH 
0.500 3.3042 
0.750 3.2122 
1.000 3.1558 
2.000 3.0700 
3.000 3.0515 
4.000 3.0597 
5.000 3.Q850 
6.000 3.1010 
7.000 3,1208 
8.000 3.1382 
9.000 3.1498 
10.00 3.1618 
13.00 3.2000 
15.00 3.2179 
18.00 3.2440 
23.00 3.2682 

Ytterbium 
Vb ml, .(b) pH 

0.500 3.2642 
0.750 3.1600 
1.000 3.1005 
2.000 3.0035 
3.000 2.9900 
4.000 3.0025 
5.000 3.0290 
6.000 3.0560 
7.000 3.0778 
8.050 3.1045 
9.000 3.1218 
10.00 3.1398 
13.00 a 3.1918 
15.00 3.2095 
18.00 a 3.2396 
20.00 3.2480 
23.00 a 3.2701 
25.00 3.2741 

Erbium 
Vb ml.(b) pH 
0.500 3.3040 
0.750 3.2050 
1.000 3.1482 
2.000 3.0580 
3.000 3.0358 
4.000 3.0518 
5.000 • 3.0720 
6.000 3.0890 
7.000 3.1107 
8.000 3.1351 
9.000 3.1509 
13.00 3.2031 
15.00 3.2225 
18.00 3.2465 
20.00 3.2570 
23.00 3.2709 
25.00 3.2803 

Lutetlum 
Vb ml. M pH 

0.500 3.2515 
0.750 3.1485 
1.000 3.0840 
2.000 2.9815 
3.000 2.9590 
4.000 2.9815 
5.000 3.0130 
6.000 3.0415 
7.000 3.0659 
8.000 3.0945 
9.000 3.1173 
10.00 . 3.1365 
13.00 a 3.1808 
15.00 3.2025 
18.00 a 3.2291 
20.00 a 3.2449 
23.00 a 3.2601 
25.00 3.2645 

Thulium 
Vb ml. (b) pH 
0.500 3.2841 
0.750 3.1810 
1.000 3.1214 
2.000 3.0320 
3.000 3.0175 
4.000 3.0262 
5.000 3.0520 
6.000 3.0758 
7.000 3.1015 
8.000 3.1158 
9^000 3.1370 
10.00 3.1520 
13.00 a 3.1969 
15.00 3.2140 
18.00 a 3.2415 
20.00 3.2499 
23.00 a 3.2696 
25.00 3.2730 

Yttrium 
Vb ml. (b) pH 

0.500 5.3330 
0.750 3.2500 
1.000 3.1982 
2.000 3.0950 
3.000 3.0866 
4.000 3.0939 
5.000 3.1138 
6.000 3.1283 
7.000 3.1440 
8.000 3.1550 
9.000 3.1700 
10.00 3.1861 
31.00 a 3.2172 
15.00 3.2305 
18.00 a 3.2529 
20.00 3.2618 
23.00 a 3.2807 
25.00 3.2855 
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Ionization constant 
Vb ml, . (a) PH 
0.500 3.6120 
0.750 3.5477 
1.000 b 3.5019 
2.000 3.4379 
4.000 3.4021 
5.000 3.3970 
6.000 3.3910 
7.000 b 3.3817 
10.00 b 3.3797 
13.00 3.3802 
15.00 b 3.3777 
18.00 3.3820 
20.00 b" 3.3817 
23.00 3.3850 
25.00 3.3819 
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APPENDIX Ci EXPERIMENTAL DATA FOR THE 
RARE-EARTH DILACTATES 

Buffer solution: a) 0.0492? K dilactic acid 
0.04936 M sodium dilactate 

b) 0.04383 M dilactic acid 
0.04936 M sodium dilactate 

c) 0.01935 M dilactic acid 
0.01939 M sodium dilactate 

Rare-earth solutions : 0.100 M rare-earth perchlorate 

Ce+3 solution: 0.1000 M Ce+^ 
0.002605 M HCIO4 

Sample : Vb ml. of buffer, 2.00 ml. of 0.1 M rare-earth 
perchlorate plus sufficient sodium perchlorate 
and water to make 50.00 ml. total volume at an 
ionic strength of 0.1 M. 

Lanthanum Cerium Praseodymium 
Vb ml. (b) pH Vb ml. (b) pH Vb ml. (b)^ pH 
0.500 3TÔ78Î 0.500 3.0191 0.500 3.0580 
0.750 2.9370 0.850 2.8356 0.750 2.8905 
1.000 2.8483 1.000 2.7860 1.000 2.7863 
1.250 2.7918 1.250 2.7240 1.250 2.7158 
1.500 2.7533 1.500 2.6860 1.500 2.6660 
2.000 2.7150 2.000 2.6439 2.000 2.6158 
2.500 2.7050 2.500 2.6291 2.500 2.6019 
3.000 2.7147 3.000 2.6380 3.000 2.6075 
4.000 2.7521 4.000 2.6730 4.000 2.6411 
5.000 2.7987 5.000 2.7150 5.000 2.6875 
6.000 2.8470 6.000 2.7619 6.000 2.7315 
8.000 2.9280 8.000 2.8540 8.000 2.8175 
10.00 2.9959 10.00 2.9280 10.00 2.8980 
12.00 3.0517 12.00 2.9910 12.00 2.9716 
14.00 3.0990 14.00 3.0508 14.00 3.0300 
16.00 3.1396 16.00 3.0978 16.00 3.0776 
18.00 3.1721 18.00 3.1366 18.00 3.1169 
20.00 3.2005 20.10 3.1706 20.00 3.1522 



www.manaraa.com

86 

Neodymlum 
Vh ml.(a) pH 
0.500 3.O52O 
0.750 2.8774 
1.000 2.7708 
1.250 2.6960 
1.500 2.6445 
2.000 2.5890 
2.500 2.5719 
3.000 2.5746 
4.000 2.6030 
5.000 2.6452 
6.000 2.6890 
9.000 2.7795 
10.00 2.8588 
12.00 2.9355 
14.00 2.9978 
16.00 3.0480 
18.00 3.0919 
20.00 3.1279 

Gadolinium 
Vb ml.(a) PH 
0.500 3.0395 
0.750 2.8730 
1.000 2.7615 
1.250 2.6820 
1.500 2.6298 
2.000 2.5617 
2.500 2.5287 
3.000 2.5210 
4.000 2.5284 
5.000 2.5541 
6.000 2.5921 
8.000 2.6849 
10.00 2.7830 
12.00 2.8740 
14.00 2.9455 
18.00 3.0519 
20.00 3.0907 

Samarium 
Vb ml.(a) pH 
0.500 3.0409 
0.750 2.8685 
1.000 2.7550 
1.250 2.6735 
1.500 2.6185 
2.000 2.5550 
2.500 2.5358 
3.000 2.5340 
4.000 2.5515 
5.000 2.5856 
6.000 2.6275 
8.000 2.7130 
10.00 2.8090 
12.00 2.8945 
14.00 2.966? 
16.00 3.0240 
18.00 3.0705 
20.00 3.1040 

Terbium 
Vb ml.(a) pH 

0.500 3.0370 
0.750 2.8750 
1.000 2.7564 
1.250 2.6775 
1.500 2.6160 
2.000 2.5503 
2.500 2.5149 
3.000 2.4981 
4.000 2.5025 
5.000 2.5281 
6.000 2.5630 
8.000 2.6595 
10.00 2.7680' 
12.00 2.8652 
14.00 2.9403 
16.00 3.0021 
18.00 3.0520 
20.00 3.0919 

Europium 
Vb ml.(a) PH 
0.500 3.0366 
0.750 2.8721 
1.000 2.7570 
1.250 2.6769 
1.500 2.6195 
2.000 2.5530 
2.550 2.5200 
3.000 2.5180 
4.000 2.5322 
5.000 2.5632 
6.000 2.6030 
8.000 2.6959 
10.10 2.7972 
12.00 2.8?40 
14.00 2.9465 
16.00 3.0019 
18.00 3.0520 
20.00 3.0862 

Dysprosium 
V% ml.(a) pH 

0.500 3.0400 
0.750 2.8710 
1.000 2.7485 
1.250 2.6650 
1.500 2.6050 
2.000 2.5319 
2.500 2.4905 
3.000 2.4757 
4.000 2.4781 
5.000 2.5022 
6.000 2.5422 
8.000 2.6496 
10.00 2.7699 
12.00 2.8680 
14.00 2.9557 
16.00 3.0110 
18.00 3.0638 
20.00 3.1075 
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Holmium Erbium Thulium 
Vb ml. (a) pH Vb ml.(a) PH Vb ml.(a) PH 

0.500 3.0380 0.500 3.0380 0.500 3.0411 
0.750 2.8590 0.750 2.8595 0.750 2.8558 
1.000 2.7416 1.000 2.7490 1.000 2.7360 
1.250 2.6580 1.250 2.6542 1.250 2.6480 
1.500 2.5990 1.500 2.5886 1.500 2.5785 
2.000 2.5181 2.050 2.4990 2.000 2.4938 
2.500 2.4780 2.500 2.4600 2.500 2.4423 
3.000 2.4600 3.000 2.4390 3.000 2.4185 
4.000 2.4580 4.000 2.4344 4.000 2.4121 
5.000 2.4820 5.000 2.4578 5.000 2.4309 
6.000 2.5223 6.000 2.5025 6.000 2.4780 
8.000 2.6381 8.000 2.6250 8.000 2.6132 
10.00 2.7691 10.00 2.7705 10.00 2.7678 
12.00 2.8790 12.00 2.8975 12.00 2.9024 
14.00 2.9620 14.00 2.9880 14.00 2.9960 
16.00 3.0250 16.00 3.0560 16.00 3.0660 
18.00 3.0780 18.00 3.1075 18.00 3.1195 
20.00 3.1175 20.00 3.1481 20.00 3.1599 

Ytterbium Lutetium Yttrium 
Vb ml. (b) pH Vb ml.(b) pH Vb ml.(b) pH 

0.500 3.0400 0.500 3.0423 0.500 3.0432 
0.750 2.8581 0.750 2.8582 0.750 2.8745 
1.000 2.7395 1.000 2.7421 1.000 2.7579 
1.250 2.6490 1.250 2.6500 1.250 2.6753 
1.500 2.5765 1.500 2.5779 1.500 2.6160 
2.000 2.4842 2.000 2.4778 2.000 2.5449 
2.550 2.4270 2.500 2.4218 2.500 2.5058 
3.000 2.4045 3.000 2.3890 3.000 2.4861 
4.000 2.3944 4.000 2.3759 4.000 2.4870 
5.000 2.4037 5.000 2.3968 5.000 2.5119 
6.000 2.4620 6.000 2.4370 6.000 2.5500 
8.000 2.6480 8.000 2.5978 8.000 2.6580 
10.00 2.7795 10.00 2.7701 10.00 2.7891 
12.00 2.9195 12.00 2.9130 12.00 2.9050 
14.00 3.0135 14.00 3.0100 14.00 2.9870 
16.00 3.0825 16.00 3.0806 16.00 3.0635 
18.00 3.1357 18.00 3.1353 20.00 3.1491 
20.20 3.1800 20.00 3.1810 



www.manaraa.com

88 

Ionization constant 
Vb ml .(c) pH 
2.00 3.6711 
3.00 3.6l65 
4.00 3.5820 
5.00 3.5600 
6.00 3.5465 
7.00 3.5330 
8.00 3.5260 
9.00 3,5199 
10.00 3.5121 
12.00 3.5060 
14.00 3.5030 
16.00 3.4986 
18.00 3.4950 
20.00 3.4925 
10.00 a 3.4819 
12.00 a 3.4767 
14.00 a 3.4760 
16.00 a 3.4756 
18.00 a 3.4745 
20.00 a 3.4738 

Ionization constant 
Concentration^-Concentration^ 

of EgA of NagA pH 
.007667 .03378 4.3979 
.01611 .02534 3.7641 
.009775 .03168 4.1978 
.01400 .02745 3.9079 
.02667 .01478 3.1625 
.03300 .00845 2.8490 
.01935 .01939 3.5060 

^12.00 ml. of the concentration given was added In 
every case. 
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